Skip to content

队列

队列(queue)是一种遵循先入先出规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列尾部,而位于队列头部的人逐个离开。

如下图所示,我们将队列头部称为“队首”,尾部称为“队尾”,将把元素加入队尾的操作称为“入队”,删除队首元素的操作称为“出队”。

队列的先入先出规则

队列常用操作

队列的常见操作如下表所示。需要注意的是,不同编程语言的方法名称可能会有所不同。我们在此采用与栈相同的方法命名。

方法名描述时间复杂度
push()元素入队,即将元素添加至队尾O(1)
pop()队首元素出队O(1)
peek()访问队首元素O(1)

我们可以直接使用编程语言中现成的队列类:

java
/* 初始化队列 */
Queue<Integer> queue = new LinkedList<>();

/* 元素入队 */
queue.offer(1);
queue.offer(3);
queue.offer(2);
queue.offer(5);
queue.offer(4);

/* 访问队首元素 */
int peek = queue.peek();

/* 元素出队 */
int pop = queue.poll();

/* 获取队列的长度 */
int size = queue.size();

/* 判断队列是否为空 */
boolean isEmpty = queue.isEmpty();

队列实现

为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素,链表和数组都符合要求。

基于链表的实现

如下图所示,我们可以将链表的“头节点”和“尾节点”分别视为“队首”和“队尾”,规定队尾仅可添加节点,队首仅可删除节点。

基于链表的实现

tab image

以下是用链表实现队列的代码:

java
/* 基于链表实现的队列 */
class LinkedListQueue {
    private ListNode front, rear; // 头节点 front ,尾节点 rear
    private int queSize = 0;

    public LinkedListQueue() {
        front = null;
        rear = null;
    }

    /* 获取队列的长度 */
    public int size() {
        return queSize;
    }

    /* 判断队列是否为空 */
    public boolean isEmpty() {
        return size() == 0;
    }

    /* 入队 */
    public void push(int num) {
        // 在尾节点后添加 num
        ListNode node = new ListNode(num);
        // 如果队列为空,则令头、尾节点都指向该节点
        if (front == null) {
            front = node;
            rear = node;
        // 如果队列不为空,则将该节点添加到尾节点后
        } else {
            rear.next = node;
            rear = node;
        }
        queSize++;
    }

    /* 出队 */
    public int pop() {
        int num = peek();
        // 删除头节点
        front = front.next;
        queSize--;
        return num;
    }

    /* 访问队首元素 */
    public int peek() {
        if (isEmpty())
            throw new IndexOutOfBoundsException();
        return front.val;
    }

    /* 将链表转化为 Array 并返回 */
    public int[] toArray() {
        ListNode node = front;
        int[] res = new int[size()];
        for (int i = 0; i < res.length; i++) {
            res[i] = node.val;
            node = node.next;
        }
        return res;
    }
}

基于数组的实现

在数组中删除首元素的时间复杂度为 O(n) ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。

我们可以使用一个变量 front 指向队首元素的索引,并维护一个变量 size 用于记录队列长度。定义 rear = front + size ,这个公式计算出的 rear 指向队尾元素之后的下一个位置。

基于此设计,数组中包含元素的有效区间为 [front, rear - 1],各种操作的实现方法如下图所示。

  • 入队操作:将输入元素赋值给 rear 索引处,并将 size 增加 1 。
  • 出队操作:只需将 front 增加 1 ,并将 size 减少 1 。

可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 O(1)

基于链表的实现

tab image

你可能会发现一个问题:在不断进行入队和出队的过程中,frontrear 都在向右移动,当它们到达数组尾部时就无法继续移动了。为了解决此问题,我们可以将数组视为首尾相接的“环形数组”。

对于环形数组,我们需要让 frontrear 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示:

java
/* 基于环形数组实现的队列 */
class ArrayQueue {
    private int[] nums; // 用于存储队列元素的数组
    private int front; // 队首指针,指向队首元素
    private int queSize; // 队列长度

    public ArrayQueue(int capacity) {
        nums = new int[capacity];
        front = queSize = 0;
    }

    /* 获取队列的容量 */
    public int capacity() {
        return nums.length;
    }

    /* 获取队列的长度 */
    public int size() {
        return queSize;
    }

    /* 判断队列是否为空 */
    public boolean isEmpty() {
        return queSize == 0;
    }

    /* 入队 */
    public void push(int num) {
        if (queSize == capacity()) {
            System.out.println("队列已满");
            return;
        }
        // 计算队尾指针,指向队尾索引 + 1
        // 通过取余操作实现 rear 越过数组尾部后回到头部
        int rear = (front + queSize) % capacity();
        // 将 num 添加至队尾
        nums[rear] = num;
        queSize++;
    }

    /* 出队 */
    public int pop() {
        int num = peek();
        // 队首指针向后移动一位,若越过尾部,则返回到数组头部
        front = (front + 1) % capacity();
        queSize--;
        return num;
    }

    /* 访问队首元素 */
    public int peek() {
        if (isEmpty())
            throw new IndexOutOfBoundsException();
        return nums[front];
    }

    /* 返回数组 */
    public int[] toArray() {
        // 仅转换有效长度范围内的列表元素
        int[] res = new int[queSize];
        for (int i = 0, j = front; i < queSize; i++, j++) {
            res[i] = nums[j % capacity()];
        }
        return res;
    }
}

以上实现的队列仍然具有局限性:其长度不可变。然而,这个问题不难解决,我们可以将数组替换为动态数组,从而引入扩容机制。有兴趣的读者可以尝试自行实现。

两种实现的对比结论与栈一致,在此不再赘述。

队列典型应用

  • 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序处理队列中的订单。在双十一期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。
  • 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等,队列在这些场景中可以有效地维护处理顺序。

粤ICP备20009776号