Skip to content

NioEventLoop原理分析

1. 概述

在对NioEventLoop原理进行分析之前,先提出三个常见问题:

  • 默认情况下,Netty服务端起多少个线程?合适启动的线程?
  • Netty是如何解决jdk的空轮训bug的?
  • Netty是如何保证异步串行无锁化的?

带着这三个问题,进入下面的NioEventLoop原理分析

2. NioEventLoop是什么

这里可以先简单的将NioEventLoop理解为一个线程,但是NioEventLoop是被封装过的“线程”,这里的不同之处可以埋一个坑进行深入分析。

而NioEventLoop在Netty中起到什么作用呢?读完下文的你应该就会有答案了。

3. NioEventLoop的创建

首先,抛出一个结论,NioEventLoop是在NioEventLoopGroup中创建出来的,具体方法逻辑如下:

NioEventLoopGroup.java

java
    @Override
    protected EventLoop newChild(Executor executor, Object... args) throws Exception {
        return new NioEventLoop(this, executor, (SelectorProvider) args[0],
            ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
    }

可以看出,在NioEventLoopGroup中的newChild方法入参里,传入了一个Executor对象,这是一个线程池对象,除此之外,还有可变参数args,带入到NioEventLoop的构造 方法里,分别强转为了SelectorProvider、SelectStrategyFactory和RejectedExecutionHandler这三个对象。读到这里可能很多人都会懵,newChild是从哪里调进来的?

为了故事的顺利发展,让我们的目光来到NioEventLoopGroup,查看下其Diagrams图。

netty02png

可以看到NioEventLoopGroup的顶级父接口是Executor,直白点理解NioEventLoopGroup就是一个线程池,NioEventLoop就是其创建出来的一个线程!下面看到NioEventLoopGroup的构造方法

NioEventLoopGroup.java

java
    public NioEventLoopGroup() {
        this(0);
    }
    
    public NioEventLoopGroup(int nThreads) {
        this(nThreads, (Executor) null);
    }

    public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
        this(nThreads, threadFactory, SelectorProvider.provider());
    }

    public NioEventLoopGroup(int nThreads, Executor executor) {
        this(nThreads, executor, SelectorProvider.provider());
    }

    public NioEventLoopGroup(
            int nThreads, ThreadFactory threadFactory, final SelectorProvider selectorProvider) {
        this(nThreads, threadFactory, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
    }

    public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory,
        final SelectorProvider selectorProvider, final SelectStrategyFactory selectStrategyFactory) {
        super(nThreads, threadFactory, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
    }

    public NioEventLoopGroup(
            int nThreads, Executor executor, final SelectorProvider selectorProvider) {
        this(nThreads, executor, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
    }

    public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider,
                             final SelectStrategyFactory selectStrategyFactory) {
        super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
    }

    public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
                             final SelectorProvider selectorProvider,
                             final SelectStrategyFactory selectStrategyFactory) {
        super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory,
                RejectedExecutionHandlers.reject());
    }

    public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
                             final SelectorProvider selectorProvider,
                             final SelectStrategyFactory selectStrategyFactory,
                             final RejectedExecutionHandler rejectedExecutionHandler) {
        super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory, rejectedExecutionHandler);
    }

这么多的构造方法,每个方法传入的入参都不一样,可以看到默认构造方法调用的是

java
    public NioEventLoopGroup() {
        this(0);
    }

一路跟到父类MultithreadEventLoopGroup,可以看到如下关键代码:

MultithreadEventLoopGroup

java
    private static final int DEFAULT_EVENT_LOOP_THREADS;
    static {
        DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
                "io.netty.eventLoopThreads", Runtime.getRuntime().availableProcessors() * 2));

        if (logger.isDebugEnabled()) {
            logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
        }
    }

    protected MultithreadEventLoopGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
        super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, threadFactory, args);
    }

可以得出一个结论就是:当NioEventLoopGroup默认黄金的线程数是 2 * CPU 个。

NioEventLoop的创建核心逻辑在MultithreadEventExecutorGroup构造方法中,可以看到如下逻辑,分析内容待定...

MultithreadEventExecutorGroup.java

java
    protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
                                            EventExecutorChooserFactory chooserFactory, Object... args) {
        if (nThreads <= 0) {
            throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
        }

        if (executor == null) {
            executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
        }

        children = new EventExecutor[nThreads];

        for (int i = 0; i < nThreads; i ++) {
            boolean success = false;
            try {
                children[i] = newChild(executor, args);
                success = true;
            } catch (Exception e) {
                // TODO: Think about if this is a good exception type
                throw new IllegalStateException("failed to create a child event loop", e);
            } finally {
                if (!success) {
                    for (int j = 0; j < i; j ++) {
                        children[j].shutdownGracefully();
                    }

                    for (int j = 0; j < i; j ++) {
                        EventExecutor e = children[j];
                        try {
                            while (!e.isTerminated()) {
                                e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
                            }
                        } catch (InterruptedException interrupted) {
                            // Let the caller handle the interruption.
                            Thread.currentThread().interrupt();
                            break;
                        }
                    }
                }
            }
        }

        chooser = chooserFactory.newChooser(children);

        final FutureListener<Object> terminationListener = new FutureListener<Object>() {
            @Override
            public void operationComplete(Future<Object> future) throws Exception {
                if (terminatedChildren.incrementAndGet() == children.length) {
                    terminationFuture.setSuccess(null);
                }
            }
        };

        for (EventExecutor e: children) {
            e.terminationFuture().addListener(terminationListener);
        }

        Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
        Collections.addAll(childrenSet, children);
        readonlyChildren = Collections.unmodifiableSet(childrenSet);
    }

netty02_02png

NioEventLoopGroup#newChild()

java
    @Override
    protected EventLoop newChild(Executor executor, Object... args) throws Exception {
        return new NioEventLoop(this, executor, (SelectorProvider) args[0],
            ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
    }

下面是NioEventLoop类的构造方法

java
    NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
                 SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
        super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
        if (selectorProvider == null) {
            throw new NullPointerException("selectorProvider");
        }
        if (strategy == null) {
            throw new NullPointerException("selectStrategy");
        }
        provider = selectorProvider;
        // 此处可以看出,每个NioEventLoop都会和一个Selector绑定对应
        selector = openSelector();
        selectStrategy = strategy;
    }

每个NioEventLoop都会和一个Selector进行绑定对应。

SingleThreadEventLoop.java构造方法中

java
    protected SingleThreadEventLoop(EventLoopGroup parent, Executor executor,
                                    boolean addTaskWakesUp, int maxPendingTasks,
                                    RejectedExecutionHandler rejectedExecutionHandler) {
        super(parent, executor, addTaskWakesUp, maxPendingTasks, rejectedExecutionHandler);
        tailTasks = newTaskQueue(maxPendingTasks);
    }

NioEventLoop.java

java
    @Override
    protected Queue<Runnable> newTaskQueue(int maxPendingTasks) {
        // This event loop never calls takeTask()
        return PlatformDependent.newMpscQueue(maxPendingTasks);
    }

这里的任务队列有啥用?

我们都知道,在Netty中是多线程的,即多个NioEventLoop,任务队列的作用就是当其他NioEventLoop拿到CPU的执行权时,却得到了其他线程的IO请求,此时NioEventLoop就把当前这个未处理完的请求 以任务的形式提交到对应NioEventLoop的队列中进行串行执行,能够保证线程安全。

EventExecutorChooser是什么?有什么作用?

在MultithreadEventExecutorGroup.java构造方法中,对EventExecutorChooser进行了赋值

java
   chooser = chooserFactory.newChooser(children);

DefaultEventExecutorChooserFactory#newChooser

java
    public EventExecutorChooser newChooser(EventExecutor[] executors) {
        // 判断executors的数量是否是2次幂,2、4、8、16
        if (isPowerOfTwo(executors.length)) {
            // 调用优化过的EventExecutorChooser
            return new PowerOfTowEventExecutorChooser(executors);
        } else {
            return new GenericEventExecutorChooser(executors);
        }
    }

先看下未优化过的ExecutorChooser,原理就是对executors.length 进行取模,这样就可以对Executors的索引位进行循环使用。

java
    private static final class GenericEventExecutorChooser implements EventExecutorChooser {
        private final AtomicInteger idx = new AtomicInteger();
        private final EventExecutor[] executors;

        GenericEventExecutorChooser(EventExecutor[] executors) {
            this.executors = executors;
        }

        @Override
        public EventExecutor next() {
            return executors[Math.abs(idx.getAndIncrement() % executors.length)];
        }
    }

优化过的ExecutorChooser,原理是通过&对executors进行取模操作。

java
    private static final class PowerOfTowEventExecutorChooser implements EventExecutorChooser {
        private final AtomicInteger idx = new AtomicInteger();
        private final EventExecutor[] executors;

        PowerOfTowEventExecutorChooser(EventExecutor[] executors) {
            this.executors = executors;
        }

        @Override
        public EventExecutor next() {
            return executors[idx.getAndIncrement() & executors.length - 1];
        }
    }

&取模原理如下图: netty02_03png

idx是当前索引位置,而加入executors数量为16,则16-1=15,二进制为

1111

idx二进制如下:

111010

由于是&操作,则相当于只取后四位,则idx & (Executors.length - 1) = 1010

如果此时idx为:1111,而此时进行&操作过后,结果就是:1111,

则idx索引位再+1,则结果就是0000,这样就达到了循环使用索引位的效果。

4. NioEventLoop的启动

先把关键步骤码出来,后面再过来分析。

AbstractBootstrap#doBind()

java
    private ChannelFuture doBind(final SocketAddress localAddress) {
        // 初始化并注册通道Channel
        final ChannelFuture regFuture = initAndRegister();
        final Channel channel = regFuture.channel();
        if (regFuture.cause() != null) {
            return regFuture;
        }

        // channelFuture完成了
        if (regFuture.isDone()) {
            ChannelPromise promise = channel.newPromise();
            // 进入NioEventLoop的初始化
            doBind0(regFuture, channel, localAddress, promise);
            return promise;
        } else {
            // Registration future is almost always fulfilled already, but just in case it's not.
            final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
            regFuture.addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    Throwable cause = future.cause();
                    if (cause != null) {
                        // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
                        // IllegalStateException once we try to access the EventLoop of the Channel.
                        promise.setFailure(cause);
                    } else {
                        // Registration was successful, so set the correct executor to use.
                        // See https://github.com/netty/netty/issues/2586
                        promise.registered();

                        doBind0(regFuture, channel, localAddress, promise);
                    }
                }
            });
            return promise;
        }
    }

AbstractBootstrap.java

java
    private static void doBind0(
            final ChannelFuture regFuture, final Channel channel,
            final SocketAddress localAddress, final ChannelPromise promise) {

        channel.eventLoop().execute(new Runnable() {
            @Override
            public void run() {
                if (regFuture.isSuccess()) {
                    channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
                } else {
                    promise.setFailure(regFuture.cause());
                }
            }
        });
    }

SingleThreadEventExecutor#execute

java
    @Override
    public void execute(Runnable task) {
        if (task == null) {
            throw new NullPointerException("task");
        }

        boolean inEventLoop = inEventLoop();
        addTask(task);
        if (!inEventLoop) {
            startThread();
            if (isShutdown()) {
                boolean reject = false;
                try {
                    if (removeTask(task)) {
                        reject = true;
                    }
                } catch (UnsupportedOperationException e) {
                    // The task queue does not support removal so the best thing we can do is to just move on and
                    // hope we will be able to pick-up the task before its completely terminated.
                    // In worst case we will log on termination.
                }
                if (reject) {
                    reject();
                }
            }
        }

        if (!addTaskWakesUp && wakesUpForTask(task)) {
            wakeup(inEventLoop);
        }
    }
    
    private void startThread() {
        if (state == ST_NOT_STARTED) {
            if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {
                boolean success = false;
                try {
                    doStartThread();
                    success = true;
                } finally {
                    if (!success) {
                        STATE_UPDATER.compareAndSet(this, ST_STARTED, ST_NOT_STARTED);
                    }
                }
            }
        }
    }
    
    private void doStartThread() {
        assert thread == null;
        executor.execute(new Runnable() {
            @Override
            public void run() {
                thread = Thread.currentThread();
                if (interrupted) {
                    thread.interrupt();
                }

                boolean success = false;
                updateLastExecutionTime();
                try {
                    SingleThreadEventExecutor.this.run();
                    success = true;
                } catch (Throwable t) {
                    logger.warn("Unexpected exception from an event executor: ", t);
                } finally {
                    for (;;) {
                        int oldState = state;
                        if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
                                SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
                            break;
                        }
                    }

                    // Check if confirmShutdown() was called at the end of the loop.
                    if (success && gracefulShutdownStartTime == 0) {
                        if (logger.isErrorEnabled()) {
                            logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
                                    SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must " +
                                    "be called before run() implementation terminates.");
                        }
                    }

                    try {
                        // Run all remaining tasks and shutdown hooks.
                        for (;;) {
                            if (confirmShutdown()) {
                                break;
                            }
                        }
                    } finally {
                        try {
                            cleanup();
                        } finally {
                            // Lets remove all FastThreadLocals for the Thread as we are about to terminate and notify
                            // the future. The user may block on the future and once it unblocks the JVM may terminate
                            // and start unloading classes.
                            // See https://github.com/netty/netty/issues/6596.
                            FastThreadLocal.removeAll();

                            STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
                            threadLock.countDown();
                            if (logger.isWarnEnabled() && !taskQueue.isEmpty()) {
                                logger.warn("An event executor terminated with " +
                                        "non-empty task queue (" + taskQueue.size() + ')');
                            }
                            terminationFuture.setSuccess(null);
                        }
                    }
                }
            }
        });
    }

就这样,调用了NioEventLoop的run方法,进行了NioEventLoop启动 NioEventLoop#run

java
    @Override
    protected void run() {
        for (;;) {
            try {
                try {
                    switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;

                    case SelectStrategy.BUSY_WAIT:
                        // fall-through to SELECT since the busy-wait is not supported with NIO

                    case SelectStrategy.SELECT:
                        select(wakenUp.getAndSet(false));

                        // 'wakenUp.compareAndSet(false, true)' is always evaluated
                        // before calling 'selector.wakeup()' to reduce the wake-up
                        // overhead. (Selector.wakeup() is an expensive operation.)
                        //
                        // However, there is a race condition in this approach.
                        // The race condition is triggered when 'wakenUp' is set to
                        // true too early.
                        //
                        // 'wakenUp' is set to true too early if:
                        // 1) Selector is waken up between 'wakenUp.set(false)' and
                        //    'selector.select(...)'. (BAD)
                        // 2) Selector is waken up between 'selector.select(...)' and
                        //    'if (wakenUp.get()) { ... }'. (OK)
                        //
                        // In the first case, 'wakenUp' is set to true and the
                        // following 'selector.select(...)' will wake up immediately.
                        // Until 'wakenUp' is set to false again in the next round,
                        // 'wakenUp.compareAndSet(false, true)' will fail, and therefore
                        // any attempt to wake up the Selector will fail, too, causing
                        // the following 'selector.select(...)' call to block
                        // unnecessarily.
                        //
                        // To fix this problem, we wake up the selector again if wakenUp
                        // is true immediately after selector.select(...).
                        // It is inefficient in that it wakes up the selector for both
                        // the first case (BAD - wake-up required) and the second case
                        // (OK - no wake-up required).

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                        // fall through
                    default:
                    }
                } catch (IOException e) {
                    // If we receive an IOException here its because the Selector is messed up. Let's rebuild
                    // the selector and retry. https://github.com/netty/netty/issues/8566
                    rebuildSelector0();
                    handleLoopException(e);
                    continue;
                }

                cancelledKeys = 0;
                needsToSelectAgain = false;
                final int ioRatio = this.ioRatio;
                if (ioRatio == 100) {
                    try {
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        runAllTasks();
                    }
                } else {
                    final long ioStartTime = System.nanoTime();
                    try {
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        final long ioTime = System.nanoTime() - ioStartTime;
                        runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
            // Always handle shutdown even if the loop processing threw an exception.
            try {
                if (isShuttingDown()) {
                    closeAll();
                    if (confirmShutdown()) {
                        return;
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
        }
    }

5. NioEventLoop执行逻辑

netty

粤ICP备20009776号