主题
哈希优化策略
在算法题中,我们常通过将线性查找替换为哈希查找来降低算法的时间复杂度。我们借助一个算法题来加深理解。
question
给定一个整数数组 nums
和一个目标元素 target
,请在数组中搜索“和”为 target
的两个元素,并返回它们的数组索引。返回任意一个解即可。
线性查找:以时间换空间
考虑直接遍历所有可能的组合。如下图所示,我们开启一个两层循环,在每轮中判断两个整数的和是否为 target
,若是,则返回它们的索引。
代码如下所示:
java
/* 方法一:暴力枚举 */
int[] twoSumBruteForce(int[] nums, int target) {
int size = nums.length;
// 两层循环,时间复杂度为 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return new int[] { i, j };
}
}
return new int[0];
}
此方法的时间复杂度为 O(n^2)
,空间复杂度为 O(1)
,在大数据量下非常耗时。
哈希查找:以空间换时间
考虑借助一个哈希表,键值对分别为数组元素和元素索引。循环遍历数组,每轮执行下图所示的步骤。
- 判断数字
target - nums[i]
是否在哈希表中,若是,则直接返回这两个元素的索引。 - 将键值对
nums[i]
和索引i
添加进哈希表。
辅助哈希表求解两数之和

实现代码如下所示,仅需单层循环即可:
java
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
int size = nums.length;
// 辅助哈希表,空间复杂度为 O(n)
Map<Integer, Integer> dic = new HashMap<>();
// 单层循环,时间复杂度为 O(n)
for (int i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return new int[] { dic.get(target - nums[i]), i };
}
dic.put(nums[i], i);
}
return new int[0];
}
此方法通过哈希查找将时间复杂度从 O(n^2)
降至 O(n)
,大幅提升运行效率。
由于需要维护一个额外的哈希表,因此空间复杂度为 O(n)
。尽管如此,该方法的整体时空效率更为均衡,因此它是本题的最优解法。