Skip to content

堆排序

堆排序(heap sort)是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。

  1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
  2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。

以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常使用一种更加优雅的实现方式。

算法流程

设数组的长度为 n ,堆排序的流程如下图所示。

  1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
  2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 1 ,已排序元素数量加 1
  3. 从堆顶元素开始,从顶到底执行堆化操作(sift down)。完成堆化后,堆的性质得到修复。
  4. 循环执行第 2. 步和第 3. 步。循环 n - 1 轮后,即可完成数组排序。

TIP

实际上,元素出堆操作中也包含第 2. 步和第 3. 步,只是多了一个弹出元素的步骤。

堆排序步骤

tab image

在代码实现中,我们使用了与“堆”章节相同的从顶至底堆化 sift_down() 函数。值得注意的是,由于堆的长度会随着提取最大元素而减小,因此我们需要给 sift_down() 函数添加一个长度参数 n ,用于指定堆的当前有效长度。代码如下所示:

java
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(int[] nums, int n, int i) {
    while (true) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        int l = 2 * i + 1;
        int r = 2 * i + 2;
        int ma = i;
        if (l < n && nums[l] > nums[ma])
            ma = l;
        if (r < n && nums[r] > nums[ma])
            ma = r;
        // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
        if (ma == i)
            break;
        // 交换两节点
        int temp = nums[i];
        nums[i] = nums[ma];
        nums[ma] = temp;
        // 循环向下堆化
        i = ma;
    }
}

/* 堆排序 */
void heapSort(int[] nums) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for (int i = nums.length / 2 - 1; i >= 0; i--) {
        siftDown(nums, nums.length, i);
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for (int i = nums.length - 1; i > 0; i--) {
        // 交换根节点与最右叶节点(交换首元素与尾元素)
        int tmp = nums[0];
        nums[0] = nums[i];
        nums[i] = tmp;
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums, i, 0);
    }
}
javaScript
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
function siftDown(nums, n, i) {
    while (true) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        let l = 2 * i + 1;
        let r = 2 * i + 2;
        let ma = i;
        if (l < n && nums[l] > nums[ma]) {
            ma = l;
        }
        if (r < n && nums[r] > nums[ma]) {
            ma = r;
        }
        // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
        if (ma === i) {
            break;
        }
        // 交换两节点
        [nums[i], nums[ma]] = [nums[ma], nums[i]];
        // 循环向下堆化
        i = ma;
    }
}

/* 堆排序 */
function heapSort(nums) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {
        siftDown(nums, nums.length, i);
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for (let i = nums.length - 1; i > 0; i--) {
        // 交换根节点与最右叶节点(交换首元素与尾元素)
        [nums[0], nums[i]] = [nums[i], nums[0]];
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums, i, 0);
    }
}

算法特性

  • 时间复杂度为 O(n \log n)、非自适应排序:建堆操作使用 O(n) 时间。从堆中提取最大元素的时间复杂度为 O(\log n) ,共循环 n - 1 轮。
  • 空间复杂度为 O(1)、原地排序:几个指针变量使用 O(1) 空间。元素交换和堆化操作都是在原数组上进行的。
  • 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。

粤ICP备20009776号