Skip to content

基数排序

上一节介绍了计数排序,它适用于数据量 n 较大但数据范围 m 较小的情况。假设我们需要对 个学号进行排序,而学号是一个 8 位数字,这意味着数据范围 非常大,使用计数排序需要分配大量内存空间,而基数排序可以避免这种情况。

基数排序(radix sort)的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。

算法流程

以学号数据为例,假设数字的最低位是第 1 位,最高位是第 8 位,基数排序的流程如下图所示。

  1. 初始化位数
  2. 对学号的第 k 位执行“计数排序”。完成后,数据会根据第 k 位从小到大排序。
  3. k 增加 1 ,然后返回步骤 2. 继续迭代,直到所有位都排序完成后结束。

基数排序算法流程

下面剖析代码实现。对于一个 进制的数字 ,要获取其第 k ,可以使用以下计算公式:

其中 表示对浮点数 向下取整,而 表示对 取模(取余)。对于学号数据,

此外,我们需要小幅改动计数排序代码,使之可以根据数字的第 k 位进行排序:

java
/* 获取元素 num 的第 k 位,其中 exp = 10^(k-1) */
int digit(int num, int exp) {
    // 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算
    return (num / exp) % 10;
}

/* 计数排序(根据 nums 第 k 位排序) */
void countingSortDigit(int[] nums, int exp) {
    // 十进制的位范围为 0~9 ,因此需要长度为 10 的桶数组
    int[] counter = new int[10];
    int n = nums.length;
    // 统计 0~9 各数字的出现次数
    for (int i = 0; i < n; i++) {
        int d = digit(nums[i], exp); // 获取 nums[i] 第 k 位,记为 d
        counter[d]++;                // 统计数字 d 的出现次数
    }
    // 求前缀和,将“出现个数”转换为“数组索引”
    for (int i = 1; i < 10; i++) {
        counter[i] += counter[i - 1];
    }
    // 倒序遍历,根据桶内统计结果,将各元素填入 res
    int[] res = new int[n];
    for (int i = n - 1; i >= 0; i--) {
        int d = digit(nums[i], exp);
        int j = counter[d] - 1; // 获取 d 在数组中的索引 j
        res[j] = nums[i];       // 将当前元素填入索引 j
        counter[d]--;           // 将 d 的数量减 1
    }
    // 使用结果覆盖原数组 nums
    for (int i = 0; i < n; i++)
        nums[i] = res[i];
}

/* 基数排序 */
void radixSort(int[] nums) {
    // 获取数组的最大元素,用于判断最大位数
    int m = Integer.MIN_VALUE;
    for (int num : nums)
        if (num > m)
            m = num;
    // 按照从低位到高位的顺序遍历
    for (int exp = 1; exp <= m; exp *= 10) {
        // 对数组元素的第 k 位执行计数排序
        // k = 1 -> exp = 1
        // k = 2 -> exp = 10
        // 即 exp = 10^(k-1)
        countingSortDigit(nums, exp);
    }
}
javaScript
/* 获取元素 num 的第 k 位,其中 exp = 10^(k-1) */
function digit(num, exp) {
    // 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算
    return Math.floor(num / exp) % 10;
}

/* 计数排序(根据 nums 第 k 位排序) */
function countingSortDigit(nums, exp) {
    // 十进制的位范围为 0~9 ,因此需要长度为 10 的桶数组
    const counter = new Array(10).fill(0);
    const n = nums.length;
    // 统计 0~9 各数字的出现次数
    for (let i = 0; i < n; i++) {
        const d = digit(nums[i], exp); // 获取 nums[i] 第 k 位,记为 d
        counter[d]++; // 统计数字 d 的出现次数
    }
    // 求前缀和,将“出现个数”转换为“数组索引”
    for (let i = 1; i < 10; i++) {
        counter[i] += counter[i - 1];
    }
    // 倒序遍历,根据桶内统计结果,将各元素填入 res
    const res = new Array(n).fill(0);
    for (let i = n - 1; i >= 0; i--) {
        const d = digit(nums[i], exp);
        const j = counter[d] - 1; // 获取 d 在数组中的索引 j
        res[j] = nums[i]; // 将当前元素填入索引 j
        counter[d]--; // 将 d 的数量减 1
    }
    // 使用结果覆盖原数组 nums
    for (let i = 0; i < n; i++) {
        nums[i] = res[i];
    }
}

/* 基数排序 */
function radixSort(nums) {
    // 获取数组的最大元素,用于判断最大位数
    let m = Number.MIN_VALUE;
    for (const num of nums) {
        if (num > m) {
            m = num;
        }
    }
    // 按照从低位到高位的顺序遍历
    for (let exp = 1; exp <= m; exp *= 10) {
        // 对数组元素的第 k 位执行计数排序
        // k = 1 -> exp = 1
        // k = 2 -> exp = 10
        // 即 exp = 10^(k-1)
        countingSortDigit(nums, exp);
    }
}

question "为什么从最低位开始排序?"

在连续的排序轮次中,后一轮排序会覆盖前一轮排序的结果。举例来说,如果第一轮排序结果 ,而第二轮排序结果 ,那么第二轮的结果将取代第一轮的结果。由于数字的高位优先级高于低位,因此应该先排序低位再排序高位。

算法特性

相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数 k 过大,可能导致时间复杂度

  • 时间复杂度为 O(nk)、非自适应排序:设数据量为 n、数据为 进制、最大位数为 k ,则对某一位执行计数排序使用 时间,排序所有 k 位使用 时间。通常情况下,k 都相对较小,时间复杂度趋向 O(n)
  • 空间复杂度为 、非原地排序:与计数排序相同,基数排序需要借助长度为 n 的数组 rescounter
  • 稳定排序:当计数排序稳定时,基数排序也稳定;当计数排序不稳定时,基数排序无法保证得到正确的排序结果。

粤ICP备20009776号